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Abstract. For the wave equations of optics and acoustics of isotropic media the infinite families
of three-dimensional plane wave Cauchy operators are found by a direct tensor method. These
families form involutive Lie groups. Their generatorsN can be found by taking square roots from
the unit tensors of the wavefront subspaces with outer normaln. In optics the basic structural
elements ofN are complex involutive operators (reflection isometries) described by pairs of
complex vectorsS andC, which satisfy the metric conditionS ·C = 1 (S · n = C · n = 0),
and also by a pair of projective operators±(1 − n ⊗ n) of the two-dimensional space of
a plane orthogonal ton. In the acoustics of isotropic media, in view of the inequality of
the longitudinal and transverse wave velocities, the generatorsN are represented as a linear
combination of an involutive operator and a diadn⊗ n. It is shown that the projection of the
average energy flux〈P 〉n of the wave is conserved in the general caseN+ 6= N . The families
of vectorsS = 1√

2
(e1 − iαe2), C = 1√

2
(e1 + (i/α)e2), e1 · e2 = 0, e1 = e∗1, e2 = e∗2,

e2
1 = e2

2 = 1, α = α∗ being a part ofN , are indicated. For these families the global operators
exp[ikN(z − z0)] acting on initial-field vectors give states described by the right-hand and left-
hand elliptical helices. The wave normaln characterizes the direction of the angular momentum
of the field and for the caseα = 1 turns out to be equivalent to the Darboux vector known in
geometry.

1. Introduction

Faraday’s and Maxwell’s geometrical ideas [1, 2] have received development from
investigations in electrodynamics, gravitation and elementary particles [3–11]. The works
of Gauss, Laplace, Poisson, Stokes, Green, Listing, Riemann, Clifford, Lie, Klein, Beltrami,
Lobachevskii, Ricci, Levi-Civita, Darboux, Cartan, Weyl and other mathematicians became
the base for development of modern topological methods and algebraic geometry. Close
connections between Maxwell’s equations and geometrical constructions of the Riemann
space [8, 11–14] were established. The fact of the topological multiconnectivity of the three-
dimensional space noted by Maxwell [2] was used in Einstein–Rainich–Misner–Wheeler
geometrodynamics [10, 13]. This dynamics gives, in particular, a purely geometrical
description of electromagnetism. A charge is interpreted with the help of electromagnetic
fields without sources which yield to Maxwell’s equations for the empty space. Maxwell’s
legacy has stimulated the development of gauge Yang–Mills fields, Higgs fields, topological
phases (Berry’s phases) and the discovery of the photon bandgap structure [10, 11, 14, 15].
Hertz’s words confirm that the essence of Maxwell theory is concentrated in the system of
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his equations. In modern spin physics these equations are applicable to massless photons
and they replace the Dirac equation which describes the behaviour of particles having a rest
mass [7, 9]. In [7] a few types of photon propagator were considered and this pointed to
the ambiguity of the choice of these propagators determined by gauge. It is also important
to take into account the fact that each plane wave solution of Maxwell’s equations is
necessarily completely polarized in a transverse direction. A non-polarized wave cannot
be a solution of Maxwell’s equations [16]. Therefore in three-dimensional space a two-
dimensional subspace—a wave surface—turns out to be outstanding. The orientation of
such a surface immersed in the three-dimensional space is given by a wave normaln.

In differential geometry there are two approaches to the description of properties
of curved two-dimensional surfaces immersed in three-dimensional space. The first is
associated with an investigation of the surface by the observer located in the enveloped
three-dimensional space (external approach). The second approach is connected with the
supposition that the observer is located on the surface and does not know about the existence
of the third dimension (internal approach). In the latter case the internal geometry of the
‘two-dimensional’ observer in general differs from the Euclidean geometry. In particular,
the observer notes that the sum of the interior angles of a triangle is not equal toπ .
Nevertheless, this observer can completely describe in enough detail the geometry of the
surface introducing into consideration the metric tensor of this surface.

The fundamental fact of electromagnetic theory is that electromagnetic waves are
transverse. In this connection the wave equations of optics have some specific nature in
comparison with other wave equations (for example, with the equations of acoustics). Using
the first, external approach we have to take material tensors (e.g. the dielectric permittivity
tensorε) as tensors of three-dimensional space. In some studies (see [17]) the material
tensors are treated as metric tensors. But using the internal approach the material, or
metric, tensors have to be taken to be ‘truncated’ and acting in the wavefront subspace. In
this sense one can speak about the metric defined at the wave surface.

In differential geometry using the method of the Darboux–Cartan mobile basis [12]
there is an analogue of the vectorn—a Darboux vector. A vectorn appears in Fedorov’s
covariant (coordinate free) theory of electromagnetic and acoustic waves in anisotropic
media [4, 5]. This vector is real for homogeneous waves and complex for inhomogeneous
ones. In [4, 5] the operators (tensors and vectors) of the three-dimensional space were used
and time was included in the relations of the theory in an asymmetrical way. Nevertheless,
all relations are covariant under Lorentz transformations. Such a covariant Fedorov approach
corresponds to the external method of the description of curved surfaces in differential
geometry and the theory of Lie groups. Fedorov gave an external method of the description
of light beam polarization with the help of a coherence tensor (beam tensor)8 [5] determined
on theSO(3) group. In the tensor8 a wave normal vector or, to be exact, an antisymmetric
second rank pseudotensorn× dual to the vectorn [4, 5] is included. In [18–24] a step
was taken towards the external description of plane waves in complex media, enabling the
avoidance of a need for the separate consideration of eigen (normal) waves in a medium, and
working with complete vectors of electromagnetic fields. In our constructions the important
role is played by the refractive index operatorN , which is a generator of continuous one-
parametric Lie groups of the evolutional solutions (photon propagators) of wave equations in
complex media [18–20]. The generatorN generalizes a scalar refractive indexn = √εµ of
an isotropic medium. The index of degeneration ofN is equal to two which determines the
structure of the appropriate simple Lie group and group attached to it [25] (root and cyclic
subspaces of propagators). Here we are going to investigate symmetry features (isometries)
of the group generators of the one-dimensional solutions of wave equations of the optics
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and acoustics of isotropic media. It displays global topological properties of the space
(Huygens principle) in which photons and phonons propagate [26]. Our consideration shows
that the tensorN containsn even for isotropic media [24]. It is given by the square root√
εµ
√

1− n⊗ n, the infinite set of its branches characterizing a continuous group known in
mathematics as a kaleidoscopic Coxeter’s group of isometries [27]. In electrodynamics the
indexN turns out to be a construction from the electrodynamical scalarsε, µ and from the
metric tensor of the two-dimensional wavefront subspace orthogonal ton. The branches of
the square rootN(εµ)−1/2 = √(1− n⊗ n) form a family of vacuum involutional operators
[18]. The importance of the problem of taking a root from the unit was specified by Hamilton
[28]. Descartes [29] gave a geometrical interpretation of this operation. We note that at the
transition to the internal method of the description of wave surfaces in isotropic media the
tensorN coincides with the differential 2×2 Jones matrix [30, 31]. Jones considered some
branches of his matrix but did not associate them with metric tensors of wave surfaces.
Cartan developed the calculus of the external forms and using the method of the Darboux
mobile basis stated a systematic approach for the construction of various spaces.

The number of coordinate degrees of freedom of an electromagnetic field is not equal
to three, but is equal to two. The Lie group arises here as an algebraic abstraction of the
concept of field symmetry. Groups are also manifolds [32], for example they are curves
and surfaces in three-dimensional space. They look locally like Euclidean subspaces, but
globally can be absolutely different from these subspaces. Fields are usually synthesized
from plane waves since any front is locally plane. For any wavenumberkx , ky , kz there are
two independent polarization states. In anisotropic media it is necessary to use generalized
Fourier analysis, with the integration on groups of exponential evolution operators whose
generators are infinitesimal operators [18, 20, 33]. The appropriate operator relations for
the construction of wave beams were given in [33]. The work of [34] is closely related
to our approach. In particular, the matricesMx , My , Mz given there correspond to the
projections of our tensor in×. In [34] the polarization calculations with the help of 2× 2
Jones matrices, 4× 4 Müller matrices and Poincaré sphere are explained on the basis
of generator representations ofO+3 , SU(2) and Lorentz groups. The fundamental Maxwell
equations were not, however, used in [34]. Earlier we considered the connection of the direct
method based on the covariant Maxwell equations with other methods of the description of
polarizations [35] and, therefore, we shall not dwell on these details. We note only that our
approach enables us to carry out the Fourier synthesis of polarized fields (spatial beams in
three-dimensional space) with the help of plane wave solutions and we do not have to divide
the field into partial (normal) waves. The approach enables us to avoid many complications,
especially in the case of the directions near the optical axis and other special directions.
As was shown in [21], there are many such exotic directions in transparent biaxial crystal
plates. In all cases the synthesis presumes an integration on groups of the plane wave
evolution operators of three-dimensional space. It is essential that in the problem of the
synthesis it is not the complete group of rotationsSO(3) that plays the primary role, but
its subgroup of axial rotations only. This is in complete agreement with the fundamentals
of quantum electrodynamics, in particular with the fact that there is no rest system for a
photon and there is always an outstanding direction in the space—the direction of the photon
momentum.

Special attention should be given to the remarkable properties of the equations of an
electromagnetic field in the form given to them by Maxwell and Hertz. These equations
contain the great algebra–geometrical ‘potential’. The operator form of the notation itself
‘suggests’ formulation of the evolution problem in an operator way. We devote this paper
to isotropic media. We consider sets of one-dimensional evolution solutions of optics and
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acoustics of such media. The symmetry nature of these sets is described by Lie groups. For
the electromagnetic field the manifolds of elliptical helicoids correspond to these groups.
To emphasize the connection of our approach with the methods of differential geometry
(topology) we give general expressions for the Darboux vectorsδ of the families of elliptical
helices in three-dimensional space. These vectors are used in the method of mobile Frenét
trihedral [36] and are defined by curvatures and torsions of helices. We show that in the
particular case of circular helices all the vectorsδ, regardless of the radius and pitch of
a screw, have the same constant direction coinciding with the wave normaln. At the
end of the paper we give involutive solutions of the wave equation of acoustics of isotropic
media to ensure the possibility of comparison with appropriate solutions in electrodynamics.
We hope that our consideration will help to promote a better understanding of connections
between the different approaches in the description of polarization states in both optics and
acoustics.

2. Involutive operators in optics of isotropic media

We proceed using Maxwell’s equations

∇×E = ikB ∇×H = −ikD (1)

for the fields with time dependence exp(−iωt), whereω is the frequency. In (1) the operator
∇×ik = −∇×ki ≡ eilk∇l dual to∇l (eilk is the Levi-Civita pseudotensor) is introduced [4, 5],
andk = ω/c. For repeated indices summation is implied (Einstein’s rule). Let us consider
the plane wave solutions of equations (1),

E(r, t) = E(z) exp(−iωt)

wherez = n · r, n is an unit vector of the wave normal (analogous expressions take place
for D, H, B). It should be noted thatz = n · r = constant is the equation of a plane in
the normal form of Gess. We have∇× → n×(d/dz) and (1) can be written in the form

n×
dE

dz
= ikB n×

dH

dz
= −ikD. (2)

For anisotropic crystals the constitutive equations

D = εE B = µH (3)

are valid, whereε and µ are dielectric permittivity and magnetic permeability tensors,
respectively. We restrict ourself to the consideration of isotropic media whose values ofε

andµ are scalars. Eliminating the vectorsE, D, B from (2) and (3) we obtain

(n×)2
d2H

dz2
− k2εµH = 0 (4)

−(n×)2 = I = 1−n⊗n being the projective operator on planes orthogonal ton, 1 being the
unit tensor of the three-dimensional space. It follows immediately from (4) thatn ·H = 0
(transversality of the field). For the tangential componentHτ = IH = −(n×)2H of the
field we have(

d2

dz2
+ k2εµI

)
Hτ = 0. (5)

We shall search forHτ in the form of the following evolutional solutions (Cauchy operators)

Hτ (z) = exp[ikN(z − z0)]Hτ (z0) (6)
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where the second rank refractive index tensorN is introduced. The vectorHτ (z0) in a
reference pointz0 is supposed to be given. Then substituting (6) in (5) and taking into
account the arbitrariness of the vectorHτ (z0) we obtain the following tensor dispersion
equation to determineN

N2 = εµI (7)

wherenN = Nn = 0. The equation (7) generalizes [24] the well known scalar Maxwell’s
relationn2 = εµ. From (7) it follows that

N =
√
εµI =

√
εµ(1− n⊗ n).

The impedance tensorγ is determined by relation [n·E] = γHτ . From the second equation
of system (1) it follows thatn×dH/dz = −ikεE, dHτ /dz ≡ ikNHτ = ikε[n ·E], hence

γ = 1

ε
N =

√
(µ/ε)I =

√
(µ/ε)(1− n⊗ n). (8)

The operatorN0 =
√
I whose square is equal to the projective operatorI is a part of the

expressions forN andγ . In mathematics such operators are known as involutive operators
[27]. The operatorN is a generator of the continuous Lie group of the evolutional solutions
(6), giving

�(z − z0) ≡ exp[ikN(z − z0)] = n⊗ n+ I cos[k
√
εµ(z − z0)] + iN0 sin[k

√
εµ(z − z0)].

(9)

The average energy flux of the electromagnetic field is〈P 〉 = (c/8π)Re[E ·H∗] and in
view of (6), (8) and (9) its projection on the direction of the normaln is equal to

〈P 〉 · n = c

8π

√
µ

ε
ReH∗τ (z0)�

+N0�Hτ (z0)

= c

8π

√
µ

ε
Re[H∗τ (z0)N0Hτ (z0)+ iR(z)]

= c

8π

√
µ

ε
ReH∗τ (z0)N0Hτ (z0)

whereR(z) contains pure real terms depending onz. It is obvious that the value〈P 〉 ·n is
conserved in then-direction (even for the case whenN0 is non-Hermitian,N+0 6= N0).

We shall show later that eitherN0 = ±I (trN0 = ±2, these are discrete roots of the
projectorI ) or N0 = ±(I − 2S ⊗C) (trN0 = 0, these are continuous sets of roots of the
projectorI ), whereS andC are, in general, complex vectors satisfying the conditions

S ·C = 1 S · n = C · n = 0.

Indeed, introducing the unit vectorse1 ande2 which form the orthonormal basis together
with n (e1e2 = ne1 = ne2 = 0, [e1e2] = n) we representN0 in the form

N0 = ae1⊗ e1+ be1⊗ e2+ ce2⊗ e1+ de2⊗ e2

wherea, b, c, d are unknown coefficients. Then, from the involution conditionN2
0 = I =

e1⊗ e1+ e2⊗ e2, one can obtain the system of algebraic equations fora, b, c, d:

a2+ bc = 1 bc + d2 = 1

b(a + d) = 0 c(a + d) = 0.
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Two different cases are possible,a 6= −d and a = −d. For the first,b = c = 0 and
a = d = ±1. ThenN0 = ±I . For the second, the equationa = −d = √1− bc is valid, b
andc being arbitrary complex numbers. Then

N0 =
√

1− bc(e1⊗ e1− e2⊗ e2)+ be1⊗ e2+ ce2⊗ e1 trN0 = 0. (10)

Let us introduce a tensorN1 = I − N0, trN1 = 2. Considering the tensorN1 adjoined to
the tensorN1 [4, 5] and taking account of (10) we conclude thatN1 = 0. This means that
the tensorN1 is a diad which can be written asN1 = 2S ⊗ C. The condition trN1 = 2
requiresS ·C = 1. Thus for the second case (a = −d)

N0 = I − 2S ⊗C S ·C = 1 S · n = C · n = 0. (11)

Let us discuss the results obtained above. SubstitutingN0 = ±I in (9) it is not difficult
to understand that discrete solutions of equation (7) describe usual waves which run in
directions±n, respectively, their polarization being wholly determined by an initial vector
Hτ (z0). The solutions (11) are more interesting. Here we dwell on a particular case

S = 1√
2
(e1− iαe2) C = 1√

2

(
e1+ i

α
e2

)
(12)

where α is a real parameter, not considering some other particular cases (e.g.N0 =
I − 2S ⊗ S, S = S∗, S2 = 1, whenN0 is a reflection operator, orN0 = I − 2S ⊗ S∗,
|S|2 = 1 and so on). Then

N0 = −i

(
1

α
e1⊗ e2− αe2⊗ e1

)
and

�(z − z0) = n⊗ n+I cos[k
√
εµ(z − z0)]+

(
1

α
e1⊗ e2− αe2⊗ e1

)
sin[k
√
εµ(z − z0)].

(13)

To understand how, in the case under consideration, the evolution ofHτ (z) depending on
z takes place we act on various initial vectorsHτ (z0) by the operator�(z − z0) (13). In
particular, ifHτ (z0) = he1 whereh is some coefficient of proportionality then

Hτ (z) = h{e1 cos[k
√
εµ(z − z0)] − αe2 sin[k

√
εµ(z − z0)]} (14)

and ifHτ (z0) = −hαe2 then

Hτ (z) = h{−αe2 cos[k
√
εµ(z − z0)] − e1 sin[k

√
εµ(z − z0)]}. (15)

It is obvious from (14) and (15) that the extreme point of the vectorHτ (z) in a projection
on a plane perpendicular ton draws an ellipse as the coordinatez rises, the direction of
traversal being clockwise. The semi-axes of this ellipse are directed alonge1 ande2, and
its eccentricity is

√
1− (1/α)2 for α > 1 and

√
1− α2 for α < 1. However, all the vectors

Hτ (z, t) depending on timet vary synchronously. Therefore, the wave under consideration
is in essence standing.

Now we consider the set of vectorsHτ (z, t0) (14) at some fixed timet = t0, the initial
points of these vectors being on the coordinate axis and coordinatez characterizing their
positions. It is obvious that the vectorsHτ (z, t0) form the surface of an elliptical helicoid,
and their extreme points lay on some twisted helix. It is important to study the differential
characteristics of this helix: curvature, torsion, Darboux vector and so on. Such an analysis
is useful in understanding the behaviour of wave surfaces in the three-dimensional space
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and can be applied for consideration of the operator synthesis of non-harmonic fields [33].
The curve under consideration can be described by the vector function (see also (14))

r(z) = h(e1 coskz − e2α sinkz)+ nz. (16)

To simplify calculations we assumez0 = 0 andε = µ = 1. Then the derivatives of this
function and products of the derivatives are

r′ = kh(−e1 sinkz − e2α coskz)+ n
r′′ = k2h(−e1 coskz + e2α sinkz)

r′′′ = k3h(e1 sinkz + e2α coskz)

|r′| =
√
k2h2(sin2 kz + α2 cos2 kz)+ 1

[r′ · r′′] = k2h(−e1α sinkz − e2 coskz − nkhα)
|[r′ · r′′]| = k2h

√
α2 sin2 kz + cos2 kz + k2h2α2

[r′ · r′′]r′′′ = −k5h2α. (17)

Using the basic definitions of differential geometry from [36] and taking into account
equations (17), we find the unit tangent vector

T = r′

|r′| =
−kh(e1 sinkz + e2α coskz)+ n√
k2h2(sin2 kz + α2 cos2 kz)+ 1

(18)

the binormal

B = [r′ · r′′]
|[r′ · r′′]| = −

e1α sinkz + e2 coskz + nkhα√
α2 sin2 kz + cos2 kz + k2h2α2

(19)

the curvature

σ = |[r
′ · r′′]|
|r′|3 = k2h

√
α2 sin2 kz + cos2 kz + k2h2α2

(
√
k2h2(sin2 kz + α2 cos2 kz)+ 1)3

(20)

the torsion

τ = [r′ · r′′]r′′′
|[r′ · r′′]|2 = −

kα

α2 sin2 kz + cos2 kz + k2h2α2
(21)

and, finally, the Darboux vector

δ = τT + σB = k√
k2h2(sin2 kz + α2 cos2 kz)+ 1

[
kαh(e1 sinkz + e2α coskz)− αn√
α2 sin2 kz + cos2 kz + k2h2α2

−kh(e1α sinkz + e2 coskz + nkhα)
k2h2(sin2 kz + α2 cos2 kz)+ 1

]
. (22)

It is known that the Darboux vector of a spatial curve is nothing less than the angular-
velocity vector of the moving trihedralTNB (N is the principal normal,N = [B · T ])
[36]. In the caseα 6= 1, δ is not parallel ton and this vector varies in a fairly quaint way,
when the coordinatez increases. Its magnitude is

|δ| = k[k2h2(α2 sin2 kz + cos2 kz + k2h2α2)(k2h2(sin2 kz + α2 cos2 kz)+ 1)−3

+α2(α2 sin2 kz + cos2 kz + k2h2α2)−2]1/2

and its projection onn is

δn = −kα[k2h2(sin2 kz + α2 cos2 kz)+ 1]−1/2

×
[

1

α2 sin2 kz + cos2 kz + k2h2α2
+ k2h2

k2h2(sin2 kz + α2 cos2 kz)+ 1

]
. (23)
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If we set the start point of all the vectorsδ, corresponding to the different values ofz, in
an origin pointO, then these vectors will lay on the surface of some cone, but this cone is
not circular in the general case.

Relations (18)–(23) are simplified to a great extent whenα = 1 (i.e. when the vectors
Hτ (z, t0) form a circular helicoid). In particular, the curvature and the torsion in this case
are

σ = k2h

k2h2+ 1
τ = − k

k2h2+ 1
(24)

and do not depend onz, and the Darboux vector is

δ = − k√
k2h2+ 1

n. (25)

At α = 1, the vectorδ is a constant vector and parallel ton for all z.
Thus atα = 1 the direction of the Darboux vector coincides with the direction of the

wave normaln. This fact will be easily understood if one takes into account the fact
that bothHτ (z, t0) and the moving trihedralTNB rotates around the coordinate axis as
one rigid construction in this case. However, the vectorHτ (z, t0) rotates with constant
angular velocityω, and the direction ofω coincides with the direction ofn. Therefore,
the Darboux vector for the moving trihedral is parallel ton. In this case the vectorsS and
C (12) are circular (S2 = C2 = 0, S ·C = 1), the refractive index tensor takes the form
of N = i

√
εµ(e2 ⊗ e1 − e1 ⊗ e2) = i

√
εµn× and the evolutional operator�(z − z0) is a

rotation operator (versor). Atα = 1 the energy fluxP is identically equal to zero for anyz
and t , and the electric and magnetic fields are parallel. The cases whenE ‖H have been
analysed in [38].

The consideration carried out above shows the important role of the concept of the
generalized helix and, in particular, the conic helix which appears in absorbing isotropic
media described by complexε andµ.

3. Involutive operators in acoustics

The propagation of elastic waves in the anisotropic medium which is characterized by a
tensor of elastic modulesciklm and densityρ is described by Christoffel’s equation [5]

ciklm
∂2um

∂xk∂xl
= ρ ∂

2ui

∂t2
(26)

whereu(r, t) = (ui(r, t)) are shift vectors of medium points. We consider the plane wave
solutions of this equation

u(r, t) = u(z) exp(−iωt)

whereω is wave frequency,z = nr, n is the unit vector of the wave normal. Then in (26)
the derivative∂/∂t is replaced by−iω and the derivative∂/∂xi is replaced byni(d/dz).
We obtain

ciklmnknl
d2um

dz2
= −ρω2ui

or, in index free notation,

3
d2u

dz2
= −ω2u. (27)
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In equation (27) the reduced Green–Christoffel’s tensor3 = (3im) = (λiklmnknl),
λiklm = ciklm/ρ is introduced [5]. This tensor is positive definite for any directions of
the normaln and therefore always has the inverse tensor3−1. We represent the coordinate
dependenceu(z) of the vectoru(r, t) in the form of

u(z) = exp[iωN(z − z0)]u(z0). (28)

In (28) the second rank tensor of slownessN is introduced and the value of vectoru in the
initial point z0 is assumed to be given. Substituting (28) into (27) and taking into account
the arbitrariness ofu(z0) we obtain the following dispersion equation determining the tensor
N

3N2 = 1

where 1 is the unit tensor of the three-dimensional space, hence(|3| 6= 0)

N =
√
3−1. (29)

Equations (29) and (28) wholly describe propagation of the plane elastic waves in anisotropic
media. We apply the obtained above relations for isotropic materials. For these materials
the reduced the Green–Christoffel’s tensor has the form

3 = (λiklmnknl) = λ441+ (λ11− λ44)n⊗ n = λ44I + λ11n⊗ n
whereλij (i, j = 1, . . . ,6) is the brief notation of elastic modules [5, 37],I = −n×2 =
1− n⊗ n is the projector on the plane perpendicular ton, and the inequality

λ11 6= λ44 (30)

always holds. Then

N =
√
3−1 = λ−1/2

44

√
I + λ−1/2

11 n⊗ n = 1

vtr

√
I + 1

vl
n⊗ n (31)

where vtr = λ
1/2
44 and vl = λ

1/2
11 are the velocities of transverse and longitudinal elastic

waves in the isotropic medium, respectively. Note that in (31) the square root just from
the projectorI on the two-dimensional plane of three-dimensional space is included. This
circumstance is explained by the inequality (30) and twofold degeneration of the velocities
of transverse elastic waves in the isotropic medium. The branches of square root

√
I

(involutions) was considered in detail in section 2. They can be represented in the general
form √

I = ±I√
I = ±(I − 2S ⊗C) (32)

whereS andC are complex vectors yielding to the conditions

S · n = C · n = 0 (33)

S ·C = 1. (34)

Therefore, the evolution of the transverse components of the shift vectoru of the plane
wave in acoustics is completely analogous with the evolution of the transverse electric and
magnetic field vectors in optics.

Now we consider the case when three phase velocities of the isonormal elastic waves
coincide. In particular, the casevtr = vl is realized for some classes of transversely isotropic
media in some directions of the normaln [39]. It does not contradict the condition of
positive definiteness of the potential energy of elastic deformations. Then the equation

N = 1

v

√
1
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holds and in the expression forN the square root from the unit tensor of the three-
dimensional space (three-dimensional involutive operators) is included. It can be shown
that all the branches of

√
1 are determined by equalities

√
1= ±1√
1= ±(1− 2S ⊗C)

whereS andC are, in general, the complex vectors of the three-dimensional space yielding
to condition (34),S ·C = 1 (but not necessarily (33)). In this case the behaviour of the
vectoru(z) whenz arises is more complex than in case (32) and we intend to investigate
this in the future.

4. Conclusion

From the evolutional solutions of Maxwell’s equations for the plane wave fields in the
isotropic medium it follows that the refractive indexN and impedanceγ of such fields
are operators of the three-dimensional spaces consisting of pairs of the scalar and tensor
cofactors,N = √εµ√1− n⊗ n andγ = √µ/ε√1− n⊗ n. Cofactors

√
εµ and

√
µ/ε

characterize the refraction and wave impedance of the substance and branches of the tensor√
1− n⊗ n being equal to±(1− n ⊗ n) and±(1− n ⊗ n − 2S ⊗ C), whereS and

C are complex vectors (S ·C = 1, S · n = C · n = 0), describe the wave polarization
properties of the medium including the vacuum too. This root from the projective operator
of the wavefront subspace orthogonal to the wave normaln has an infinite set of branches
which are reflectional and rotational isometries of the field. These isometries are involutive
operators which locally characterize the symmetry of the electromagnetic field. This set of
operators form continuous groups of transformations known in mathematical literature as
the kaleidoscopic Coxeter’s groups. These groups generate the involutive global Lie groups
of the wave equation solutions and simultaneously characterize the symmetry of equations
and solutions. The tensor

√
1− n⊗ n is in essence the root from the metric tensor of the

two-dimensional (adjoined) subspace of the wavefront immersed in the three-dimensional
space, the third dimension of which is counted out along the normaln (direction of the
photon momentum). Our exponential solutions are the mathematical expressions of Huygens
principle for polarized light. We saw that for the continuous Lie group of solutions of the
one-dimensional Helmholtz equation there corresponds a manifold of elliptical helices in
three-dimensional space. The theory of the mobile Frenet–Serret trihedral has been applied
for finding curvatures and torsions of these lines and Darboux vectors. It has been shown
that in the case of circular lines the Darboux vectors are directed along the light beam.

In the acoustics of isotropic media the tensor of slowness is represented as a linear
combination of the root

√
1− n⊗ n and the diadn⊗n. Such a structure of this tensor is

the result of non-coinciding velocities of the longitudinal and transverse isonormal waves
and twofold degeneracy of the transverse wave velocities. The evolutions of the transverse
components of fields in the optics and acoustics of isotropic media are described, therefore,
by the same generator

√
1− n⊗ n and are wholly analogous.
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