IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Maxwell's square roots from the metric tensors of wave surfaces and branches of solutions of

the photon and phonon wave equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 4665
(http://iopscience.iop.org/0305-4470/30/13/017)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.72
The article was downloaded on 02/06/2010 at 04:24

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 4665-4675. Printed in the UK PIl: S0305-4470(97)74123-4

Maxwell’'s square roots from the metric tensors of wave
surfaces and branches of solutions of the photon and
phonon wave equations

L M Barkovsky ard A N Furs

Department of Theoretical Physics, Belarus State University, F Skaryna av 4, Minsk, Belarus,
220050

Received 1 May 1996, in final form 17 December 1996

Abstract. For the wave equations of optics and acoustics of isotropic media the infinite families
of three-dimensional plane wave Cauchy operators are found by a direct tensor method. These
families form involutive Lie groups. Their generatadyscan be found by taking square roots from
the unit tensors of the wavefront subspaces with outer normdh optics the basic structural
elements ofN are complex involutive operators (reflection isometries) described by pairs of
complex vectorsS and C, which satisfy the metric conditio§ - C =1 (S-n =C :-n = 0),

and also by a pair of projective operataty1 — n ® n) of the two-dimensional space of

a plane orthogonal tex. In the acoustics of isotropic media, in view of the inequality of
the longitudinal and transverse wave velocities, the generaioese represented as a linear
combination of an involutive operator and a diad® n. It is shown that the projection of the
average energy fluxP)n of the wave is conserved in the general case # N. The families

of vectors S = %(el —iaey), C = %(el + (i/a)e2), e1-e2 = 0, e1 = e}, ex = €3,

€2 =e3=1,a = a* being a part ofV, are indicated. For these families the global operators
explikN (z — zo)] acting on initial-field vectors give states described by the right-hand and left-
hand elliptical helices. The wave normalcharacterizes the direction of the angular momentum
of the field and for the case = 1 turns out to be equivalent to the Darboux vector known in
geometry.

1. Introduction

Faraday’'s and Maxwell's geometrical ideas [1,2] have received development from
investigations in electrodynamics, gravitation and elementary particles [3-11]. The works
of Gauss, Laplace, Poisson, Stokes, Green, Listing, Riemann, Clifford, Lie, Klein, Beltrami,
Lobachevskii, Ricci, Levi-Civita, Darboux, Cartan, Weyl and other mathematicians became
the base for development of modern topological methods and algebraic geometry. Close
connections between Maxwell's equations and geometrical constructions of the Riemann
space [8, 11-14] were established. The fact of the topological multiconnectivity of the three-
dimensional space noted by Maxwell [2] was used in Einstein—Rainich—Misner—-Wheeler
geometrodynamics [10,13]. This dynamics gives, in particular, a purely geometrical
description of electromagnetism. A charge is interpreted with the help of electromagnetic
fields without sources which yield to Maxwell's equations for the empty space. Maxwell’s
legacy has stimulated the development of gauge Yang—Mills fields, Higgs fields, topological
phases (Berry’s phases) and the discovery of the photon bandgap structure [10,11, 14, 15].
Hertz's words confirm that the essence of Maxwell theory is concentrated in the system of
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his equations. In modern spin physics these equations are applicable to massless photons
and they replace the Dirac equation which describes the behaviour of particles having a rest
mass [7,9]. In [7] a few types of photon propagator were considered and this pointed to
the ambiguity of the choice of these propagators determined by gauge. It is also important
to take into account the fact that each plane wave solution of Maxwell's equations is
necessarily completely polarized in a transverse direction. A non-polarized wave cannot
be a solution of Maxwell’s equations [16]. Therefore in three-dimensional space a two-
dimensional subspace—a wave surface—turns out to be outstanding. The orientation of
such a surface immersed in the three-dimensional space is given by a wave normal

In differential geometry there are two approaches to the description of properties
of curved two-dimensional surfaces immersed in three-dimensional space. The first is
associated with an investigation of the surface by the observer located in the enveloped
three-dimensional space (external approach). The second approach is connected with the
supposition that the observer is located on the surface and does not know about the existence
of the third dimension (internal approach). In the latter case the internal geometry of the
‘two-dimensional’ observer in general differs from the Euclidean geometry. In particular,
the observer notes that the sum of the interior angles of a triangle is not equal to
Nevertheless, this observer can completely describe in enough detail the geometry of the
surface introducing into consideration the metric tensor of this surface.

The fundamental fact of electromagnetic theory is that electromagnetic waves are
transverse. In this connection the wave equations of optics have some specific nature in
comparison with other wave equations (for example, with the equations of acoustics). Using
the first, external approach we have to take material tensors (e.g. the dielectric permittivity
tensore) as tensors of three-dimensional space. In some studies (see [17]) the material
tensors are treated as metric tensors. But using the internal approach the material, or
metric, tensors have to be taken to be ‘truncated’ and acting in the wavefront subspace. In
this sense one can speak about the metric defined at the wave surface.

In differential geometry using the method of the Darboux—Cartan mobile basis [12]
there is an analogue of the vecter—a Darboux vector. A vecton appears in Fedorov’s
covariant (coordinate free) theory of electromagnetic and acoustic waves in anisotropic
media [4,5]. This vector is real for homogeneous waves and complex for inhomogeneous
ones. In [4, 5] the operators (tensors and vectors) of the three-dimensional space were used
and time was included in the relations of the theory in an asymmetrical way. Nevertheless,
all relations are covariant under Lorentz transformations. Such a covariant Fedorov approach
corresponds to the external method of the description of curved surfaces in differential
geometry and the theory of Lie groups. Fedorov gave an external method of the description
of light beam polarization with the help of a coherence tensor (beam tebgbt)determined
on theSO(3) group. In the tenso® a wave normal vector or, to be exact, an antisymmetric
second rank pseudotensar: dual to the vectom [4,5] is included. In [18-24] a step
was taken towards the external description of plane waves in complex media, enabling the
avoidance of a need for the separate consideration of eigen (normal) waves in a medium, and
working with complete vectors of electromagnetic fields. In our constructions the important
role is played by the refractive index operai@r which is a generator of continuous one-
parametric Lie groups of the evolutional solutions (photon propagators) of wave equations in
complex media [18-20]. The generat¥rgeneralizes a scalar refractive index= /s of
an isotropic medium. The index of degeneratiombfs equal to two which determines the
structure of the appropriate simple Lie group and group attached to it [25] (root and cyclic
subspaces of propagators). Here we are going to investigate symmetry features (isometries)
of the group generators of the one-dimensional solutions of wave equations of the optics
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and acoustics of isotropic media. It displays global topological properties of the space
(Huygens principle) in which photons and phonons propagate [26]. Our consideration shows
that the tensoV containsn even for isotropic media [24]. It is given by the square root
JEer/1—n ® n, the infinite set of its branches characterizing a continuous group known in
mathematics as a kaleidoscopic Coxeter’s group of isometries [27]. In electrodynamics the
index N turns out to be a construction from the electrodynamical scalgusand from the
metric tensor of the two-dimensional wavefront subspace orthogonal ithe branches of

the square roaV (e ) "¥2 = /(1 — n ® n) form a family of vacuum involutional operators

[18]. The importance of the problem of taking a root from the unit was specified by Hamilton
[28]. Descartes [29] gave a geometrical interpretation of this operation. We note that at the
transition to the internal method of the description of wave surfaces in isotropic media the
tensorN coincides with the differential 2 2 Jones matrix [30, 31]. Jones considered some
branches of his matrix but did not associate them with metric tensors of wave surfaces.
Cartan developed the calculus of the external forms and using the method of the Darboux
mobile basis stated a systematic approach for the construction of various spaces.

The number of coordinate degrees of freedom of an electromagnetic field is not equal
to three, but is equal to two. The Lie group arises here as an algebraic abstraction of the
concept of field symmetry. Groups are also manifolds [32], for example they are curves
and surfaces in three-dimensional space. They look locally like Euclidean subspaces, but
globally can be absolutely different from these subspaces. Fields are usually synthesized
from plane waves since any front is locally plane. For any wavenurbé, k. there are
two independent polarization states. In anisotropic media it is necessary to use generalized
Fourier analysis, with the integration on groups of exponential evolution operators whose
generators are infinitesimal operators [18, 20, 33]. The appropriate operator relations for
the construction of wave beams were given in [33]. The work of [34] is closely related
to our approach. In particular, the matricés,, M,, M, given there correspond to the
projections of our tensomi*. In [34] the polarization calculations with the help ofx22
Jones matrices, 4 4 Miuller matrices and Poincarsphere are explained on the basis
of generator representations 6f, SU(2) and Lorentz groups. The fundamental Maxwell
equations were not, however, used in [34]. Earlier we considered the connection of the direct
method based on the covariant Maxwell equations with other methods of the description of
polarizations [35] and, therefore, we shall not dwell on these details. We note only that our
approach enables us to carry out the Fourier synthesis of polarized fields (spatial beams in
three-dimensional space) with the help of plane wave solutions and we do not have to divide
the field into partial (normal) waves. The approach enables us to avoid many complications,
especially in the case of the directions near the optical axis and other special directions.
As was shown in [21], there are many such exotic directions in transparent biaxial crystal
plates. In all cases the synthesis presumes an integration on groups of the plane wave
evolution operators of three-dimensional space. It is essential that in the problem of the
synthesis it is not the complete group of rotatich@(3) that plays the primary role, but
its subgroup of axial rotations only. This is in complete agreement with the fundamentals
of quantum electrodynamics, in particular with the fact that there is no rest system for a
photon and there is always an outstanding direction in the space—the direction of the photon
momentum.

Special attention should be given to the remarkable properties of the equations of an
electromagnetic field in the form given to them by Maxwell and Hertz. These equations
contain the great algebra—geometrical ‘potential’. The operator form of the notation itself
‘suggests’ formulation of the evolution problem in an operator way. We devote this paper
to isotropic media. We consider sets of one-dimensional evolution solutions of optics and
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acoustics of such media. The symmetry nature of these sets is described by Lie groups. For
the electromagnetic field the manifolds of elliptical helicoids correspond to these groups.
To emphasize the connection of our approach with the methods of differential geometry
(topology) we give general expressions for the Darboux ve@afsthe families of elliptical
helices in three-dimensional space. These vectors are used in the method of moléte Fren
trihedral [36] and are defined by curvatures and torsions of helices. We show that in the
particular case of circular helices all the vectdrsregardless of the radius and pitch of

a screw, have the same constant direction coinciding with the wave netrmaht the

end of the paper we give involutive solutions of the wave equation of acoustics of isotropic
media to ensure the possibility of comparison with appropriate solutions in electrodynamics.
We hope that our consideration will help to promote a better understanding of connections
between the different approaches in the description of polarization states in both optics and
acoustics.

2. Involutive operators in optics of isotropic media

We proceed using Maxwell's equations

V*E =ikB V*H = —ikD Q)
for the fields with time dependence &xfiwt), wherew is the frequency. In (1) the operator
Vi = =V = eV, dual toV, (e is the Levi-Civita pseudotensor) is introduced [4, 5],
andk = w/c. For repeated indices summation is implied (Einstein’s rule). Let us consider
the plane wave solutions of equations (1),

E(r,t) = E(z) exp(—iwt)

wherez = n - r, n is an unit vector of the wave normal (analogous expressions take place
for D, H, B). It should be noted that = n - » = constant is the equation of a plane in
the normal form of Gess. We hawe* — n*(d/dz) and (1) can be written in the form

dE . dH :
n*— =ikB n* —— = —ikD. (2)
dz dz
For anisotropic crystals the constitutive equations
D =¢E B=uH 3)

are valid, wheres and u are dielectric permittivity and magnetic permeability tensors,
respectively. We restrict ourself to the consideration of isotropic media whose valges of
andp are scalars. Eliminating the vectals D, B from (2) and (3) we obtain

*H
(nX)Z@ — kPepH =0 (4)

—(n*)? = I = 1-n®n being the projective operator on planes orthogonal,ta being the
unit tensor of the three-dimensional space. It follows immediately from (4ythatl = 0
(transversality of the field). For the tangential componEht= I H = —(n*)?H of the
field we have

d2
(dz2 + k%,u) H,=0. (5)

We shall search foH in the form of the following evolutional solutions (Cauchy operators)
H:(z) = exp[ikN (z — z0)] H: (z0) (6)
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where the second rank refractive index tensbiis introduced. The vectoH,(zp) in a
reference point is supposed to be given. Then substituting (6) in (5) and taking into
account the arbitrariness of the vectt¥, (zg) we obtain the following tensor dispersion
equation to determing/

N?=¢eul (7)

wherenN = Nn = 0. The equation (7) generalizes [24] the well known scalar Maxwell's
relationn? = eu. From (7) it follows that

N = eul =\/eu(l—men).

The impedance tensgris determined by relationd- E] = y H,. From the second equation
of system (1) it follows thaw*dH /dz = —ike E, dH, /dz = ikNH, = ike[n - E], hence

1
y=_N=V@/el=yp/el-nen). 8)

The operatorNy, = +/1 whose square is equal to the projective operdtds a part of the
expressions foV andy. In mathematics such operators are known as involutive operators
[27]. The operatoW is a generator of the continuous Lie group of the evolutional solutions

(6), giving

Q(z — z0) = exp[ikN(z — z0)] = n ® n + I cosk./en(z — zo)] + iNoSinfk/en(z — zo)].
9)

The average energy flux of the electromagnetic field@ = (¢/87) Re[E - H*] and in
view of (6), (8) and (9) its projection on the direction of the norrnais equal to

(P)-n = E_;T\/EReH;*(Z())SfNlerdﬂ(Zo)

c |u " .
= 8[ Re[H (z0) NoH (z0) +1R(2)]

T &

C
= \/ﬁ ReH (z0) NoH (z0)

8V ¢
whereR(z) contains pure real terms dependingzont is obvious that the valuéP) - n is
conserved in thew-direction (even for the case whe¥y is non-Hermitian, Ny~ # No).

We shall show later that eithe¥y = +1 (tr Ng = 2, these are discrete roots of the
projectorl) or No = £(I — 25 ® C) (tr No = 0, these are continuous sets of roots of the

projectorl), whereS andC are, in general, complex vectors satisfying the conditions
S-C=1 S.n=C-n=0.

Indeed, introducing the unit vectoes and e, which form the orthonormal basis together
with n (e1e; = ne; = ne, = 0, [erez] = n) we represeniVy in the form

No=ae1®e;+be;®er+cex ®e;+der R er

wherea, b, ¢, d are unknown coefficients. Then, from the involution conditmglz I =
e1 ® e; + e2 ® e, One can obtain the system of algebraic equations: far, ¢, d:

a’+bc=1 bc+d*=1
ba+d)=0 cla+d)=0.
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Two different cases are possible,# —d anda = —d. For the first,h = ¢ = 0 and
a =d = =+1. ThenNy = £1. For the second, the equatian= —d = /1 — bc is valid, b
andc being arbitrary complex numbers. Then

No=+1—bcle1®@e1 —er®er) +be;®er+cer ® e tr Ng = 0. (20)

Let us introduce a tensav, = I — Np, tr Ny = 2. Considering the tensad¥, adjoined to
the tensorV; [4,5] and taking account of (10) we conclude tat = 0. This means that
the tensorN; is a diad which can be written a¥;, = 25 ® C. The condition ttN; = 2
requiresS - C = 1. Thus for the second case £ —d)

No=1-28®@C S§-C=1 S-n=C-n=0. (11)

Let us discuss the results obtained above. SubstitwWing =17 in (9) it is not difficult
to understand that discrete solutions of equation (7) describe usual waves which run in
directionstn, respectively, their polarization being wholly determined by an initial vector
H(z0). The solutions (11) are more interesting. Here we dwell on a particular case

S ! ( izey) C ! ( + | ) (12)
= —(=(€e1 —lxey =—1€ —e2
2 2\ e

where « is a real parameter, not considering some other particular casesNg.g-
I-25®8,8 =S* S?=1, whenN, is a reflection operator, aNg = I — 25 ® S*,
|S§]1? = 1 and so on). Then

(1
No = —I (el Rer—aer® el)
o
and
1 .
Q(z — z0) = n ®n+1I cosk./eiu(z — z0)]+ <a61 Qe —ae; ® 61) sinfk /e (z — z0)].

(13)

To understand how, in the case under consideration, the evolutidh, &f) depending on
z takes place we act on various initial vectdtk, (zg) by the operatof2(z — zg) (13). In
particular, if H,(z9) = hey whereh is some coefficient of proportionality then

H. (z) = h{eicosk/eu(z — z0)] — aez sinfk/eiu(z — 20)]} (14)
and if H,(zg) = —hae; then
H.(z) = h{—aezcosk./eiu(z — z0)] — e1Sinfk/eu(z — z0)]}. (15)

It is obvious from (14) and (15) that the extreme point of the ve&#pKz) in a projection
on a plane perpendicular te draws an ellipse as the coordinateises, the direction of
traversal being clockwise. The semi-axes of this ellipse are directed aloagde,, and
its eccentricity isy/1 — (1/«)? for « > 1 and+/1 — o2 for o < 1. However, all the vectors
H_(z,t) depending on time vary synchronously. Therefore, the wave under consideration
is in essence standing.

Now we consider the set of vectof, (z, o) (14) at some fixed time = 7o, the initial
points of these vectors being on the coordinate axis and coordinelbaracterizing their
positions. It is obvious that the vectoFs, (z, tp) form the surface of an elliptical helicoid,
and their extreme points lay on some twisted helix. It is important to study the differential
characteristics of this helix: curvature, torsion, Darboux vector and so on. Such an analysis
is useful in understanding the behaviour of wave surfaces in the three-dimensional space
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and can be applied for consideration of the operator synthesis of non-harmonic fields [33].
The curve under consideration can be described by the vector function (see also (14))
r(z) = h(eycoskz — exa Sinkz) + nz. (16)

To simplify calculations we assumg = 0 ande = u = 1. Then the derivatives of this
function and products of the derivatives are

7' = kh(—e; Sinkz — exa COSkz) + 1

r" = k®h(—ey cOskz + epa Sinkz)

r" = k3h(e1 sinkz + exa coskz)

|| = \/kzhz(sinz kz +a2cofkz) +1

[ - "] = k®h(—eia Sinkz — e, coskz — nkha)

[r"-7"]| = k2hv/ o2 Sirf kz + co2 kz + k?h2a?

[v - 7"r" = —k°h?a. 17)

Using the basic definitions of differential geometry from [36] and taking into account
equations (17), we find the unit tangent vector

r —kh(ey Sinkz + e COSkz) +n

lr| Vk2h2(sirf kz + a?cofkz) + 1 (18)
the binormal
_ [r" - r"] __ e« sinkz + e> coskz + nkha (19)
IIr -1l VaZsiikz + cofkz + k2h2a?
the curvature
_ e k2hy/ o Sir? kz + coR kz + k2h2a? (20)
7|3 (Vk2h2(sirf kz + a2 cof kz) + 1)3
the torsion
[ e _ ko 21)

T Ir-r"12 ~  a2siPkz + cofkz + k2h2a?

and, finally, the Darboux vector
k |:kah(el sinkz + eox coskz) — an
Vk2h2(sirf kz + a2 cofkz) + 1L Va2 sifkz + cofkz + k2h2a?
kh(eio Sinkz 4+ e coskz + nkha)

 k2h2(sirfkz + a?cofkz) + 1 }
It is known that the Darboux vector of a spatial curve is nothing less than the angular-
velocity vector of the moving trihedrdl’ N B (N is the principal normalN = [B - T)

[36]. In the caser # 1, § is not parallel ton and this vector varies in a fairly quaint way,
when the coordinate increases. Its magnitude is

18] = k[k2h?(a?sirf kz + co kz + k?h%a?) (k*h3(sirf kz + a® coS kz) + 1) 3
+a?(a?sir? kz + cos kz + k*h?a?)~?]Y/2
and its projection om is
on = —ka[k?h?(sirf kz + «? coS kz) + 1]~ Y2
[ 1 k?h?
X . + -
a2sirfkz + cof kz + k2h2a2  k2h2(sirf kz 4+ a?2co$kz) + 1

0=1tT+0B =

(22)

} . (23)
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If we set the start point of all the vectods corresponding to the different values mfin
an origin pointO, then these vectors will lay on the surface of some cone, but this cone is
not circular in the general case.

Relations (18)—(23) are simplified to a great extent whea 1 (i.e. when the vectors
H(z, tp) form a circular helicoid). In particular, the curvature and the torsion in this case
are

2
=i T ERT )
and do not depend on and the Darboux vector is
6= —#n. (25)
Vkh? +1

At o = 1, the vectord is a constant vector and parallel #ofor all z.

Thus ate = 1 the direction of the Darboux vector coincides with the direction of the
wave normaln. This fact will be easily understood if one takes into account the fact
that both H, (z, tp) and the moving trihedrdl’ N B rotates around the coordinate axis as
one rigid construction in this case. However, the vedibs(z, tp) rotates with constant
angular velocityw, and the direction ofv coincides with the direction ofh. Therefore,
the Darboux vector for the moving trihedral is parallehkto In this case the vectorS and
C (12) are circular §2 = C? =0, S - C = 1), the refractive index tensor takes the form
of N =i /eu(e2 ® e1 — e1 ® ez) = i,/eun™ and the evolutional operat@ (z — zo) is a
rotation operator (versor). Ai = 1 the energy fluxP is identically equal to zero for any
andr, and the electric and magnetic fields are parallel. The cases Whe#! have been
analysed in [38].

The consideration carried out above shows the important role of the concept of the
generalized helix and, in particular, the conic helix which appears in absorbing isotropic
media described by complexand u.

3. Involutive operators in acoustics

The propagation of elastic waves in the anisotropic medium which is characterized by a
tensor of elastic modules,,;,,, and densityp is described by Christoffel’'s equation [5]
9%u,, 92u;
iklm =~ — 26
ik or2 (26)
wherewu(r, t) = (u;(r, t)) are shift vectors of medium points. We consider the plane wave
solutions of this equation

u(r, 1) = u(z) exp(—iwt)

wherew is wave frequency; = nr, n is the unit vector of the wave normal. Then in (26)
the derivatived/dt is replaced by—iw and the derivative)/dx; is replaced by, (d/dz).
We obtain

2

CikimNin —d o pwlu

ikm T = - i
dz2

or, in index free notation,

du
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In equation (27) the reduced Green-Christoffel's tengor= (A;,) = imnen),
Aikim = Cirim/p 1S introduced [5]. This tensor is positive definite for any directions of
the normaln and therefore always has the inverse tensot. We represent the coordinate
dependences(z) of the vectoru(r, #) in the form of

u(z) = explioN (z — zo)]u(zo). (28)

In (28) the second rank tensor of slowneéss introduced and the value of vectarin the
initial point zg is assumed to be given. Substituting (28) into (27) and taking into account
the arbitrariness ofi(zp) we obtain the following dispersion equation determining the tensor
N

AN?=1
where 1 is the unit tensor of the three-dimensional space, hgn¢es 0)
N =+vA-L (29)

Equations (29) and (28) wholly describe propagation of the plane elastic waves in anisotropic
media. We apply the obtained above relations for isotropic materials. For these materials
the reduced the Green—Christoffel's tensor has the form

A = Aiggmning) = daal + (A1 — s @ = dgal + A1 m @ n

wherek;; (i, j = 1,...,6) is the brief notation of elastic modules [5, 37],= —n<? =
1— n ® n is the projector on the plane perpendiculartpand the inequality
A1 7 Aag (30)
always holds. Then
_ _ 1 1
N:vA—1=A441/2\/7+)»111/2n®n=—ﬁ—i——n@n (31)
Utr v

where vy = Ai{f andv = ki/lz are the velocities of transverse and longitudinal elastic

waves in the isotropic medium, respectively. Note that in (31) the square root just from
the projector/ on the two-dimensional plane of three-dimensional space is included. This
circumstance is explained by the inequality (30) and twofold degeneration of the velocities
of transverse elastic waves in the isotropic medium. The branches of square/foot
(involutions) was considered in detail in section 2. They can be represented in the general
form

VI=+I

Vi=+(I-25®C) (32)
where S and C are complex vectors yielding to the conditions

S.n=C-n=0 (33)

S.c=1 (34)

Therefore, the evolution of the transverse components of the shift vactirthe plane
wave in acoustics is completely analogous with the evolution of the transverse electric and
magnetic field vectors in optics.

Now we consider the case when three phase velocities of the isonormal elastic waves
coincide. In particular, the casg = v, is realized for some classes of transversely isotropic
media in some directions of the normal [39]. It does not contradict the condition of
positive definiteness of the potential energy of elastic deformations. Then the equation

1
N="V1
v
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holds and in the expression fav the square root from the unit tensor of the three-
dimensional space (three-dimensional involutive operators) is included. It can be shown
that all the branches of/1 are determined by equalities

Vi=+1
V1i=+1-25®C)

whereS andC are, in general, the complex vectors of the three-dimensional space yielding
to condition (34),S - C = 1 (but not necessarily (33)). In this case the behaviour of the
vectoru(z) whenz arises is more complex than in case (32) and we intend to investigate
this in the future.

4, Conclusion

From the evolutional solutions of Maxwell's equations for the plane wave fields in the
isotropic medium it follows that the refractive indeX and impedance, of such fields
are operators of the three-dimensional spaces consisting of pairs of the scalar and tensor
cofactors,N = \/euv/1—n@mn andy = /u/e+/1—n ® n. Cofactors,/en and /u/e
characterize the refraction and wave impedance of the substance and branches of the tensor
v/1—n®mn being equal tot(l1—n®mn) and+(1—n ®n — 25 ® C), where S and
C are complex vectorsS-C =1, S-n = C -n = 0), describe the wave polarization
properties of the medium including the vacuum too. This root from the projective operator
of the wavefront subspace orthogonal to the wave nomnbas an infinite set of branches
which are reflectional and rotational isometries of the field. These isometries are involutive
operators which locally characterize the symmetry of the electromagnetic field. This set of
operators form continuous groups of transformations known in mathematical literature as
the kaleidoscopic Coxeter’s groups. These groups generate the involutive global Lie groups
of the wave equation solutions and simultaneously characterize the symmetry of equations
and solutions. The tensa/1 — n ® n is in essence the root from the metric tensor of the
two-dimensional (adjoined) subspace of the wavefront immersed in the three-dimensional
space, the third dimension of which is counted out along the norm@irection of the
photon momentum). Our exponential solutions are the mathematical expressions of Huygens
principle for polarized light. We saw that for the continuous Lie group of solutions of the
one-dimensional Helmholtz equation there corresponds a manifold of elliptical helices in
three-dimensional space. The theory of the mobile Frenet—Serret trihedral has been applied
for finding curvatures and torsions of these lines and Darboux vectors. It has been shown
that in the case of circular lines the Darboux vectors are directed along the light beam.

In the acoustics of isotropic media the tensor of slowness is represented as a linear
combination of the root/1 — n ® n and the diadh ® n. Such a structure of this tensor is
the result of non-coinciding velocities of the longitudinal and transverse isonormal waves
and twofold degeneracy of the transverse wave velocities. The evolutions of the transverse
components of fields in the optics and acoustics of isotropic media are described, therefore,
by the same generatef1 — n ® n and are wholly analogous.
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